1. Is (3, 21) a solution of the equation \(y = x^2 + 5x \)? Show how you know.

\[
21 = (3)^2 + (3) \quad ?
\]
\[
21 = 9 + 15
\]
\[
\not{21} = \not{24}
\]

NO

2. Vince earns $8.50 an hour at a fast-food restaurant.

a) Fill in the chart that represents this situation.

<table>
<thead>
<tr>
<th># hours</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.50</td>
</tr>
<tr>
<td>3</td>
<td>25.50</td>
</tr>
<tr>
<td>4</td>
<td>34.00</td>
</tr>
<tr>
<td>6</td>
<td>51.00</td>
</tr>
</tbody>
</table>

\[
1 \times 8.50 = 8.50
\]
\[
\frac{25.50}{8.50} = 3
\]
\[
4 \times 8.50 = 34.00
\]
\[
\frac{51.00}{8.50} = 6
\]

b) Write an equation to represent this situation.

Let \(x \) = # hours of working
Let \(y \) = total $ made during that time

\[
y = 8.50x
\]

c) Make a graph of this situation on the grid below. Be sure to label clearly!

![Graph](image)

d) How many hours did Vince work if he was paid $119?

\[
\frac{119}{8.5} = 14
\]

Vince worked for 14 hours.