Reteaching

The Quadratic Formula and the Discriminant

If a quadratic equation is written in the form $ax^2 + bx + c = 0$, the solutions can be found using the following formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

This formula is called the quadratic formula.

Problem

What are the solutions of $x^2 + 7x = 60$? Use the quadratic formula.

First rewrite the equation in the form $ax^2 + bx + c = 0$.

$$x^2 + 7x = 60$$

$$x^2 + 7x - 60 = 60 - 60$$

Subtract 60 from each side.

$$x^2 + 7x - 60 = 0$$

Simplify,

Therefore, a = 1, b = 7, and c = -60.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-7 \pm \sqrt{7^2 - 4(1)(-60)}}{2(1)}$$

$$x = \frac{-7 \pm \sqrt{289}}{2}$$

$$x = \frac{-7 \pm 17}{2}$$

The two solutions are $\frac{-7-17}{2}$ or -12 and $\frac{-7+17}{2}$ or 5.

Exercises

Use the quadratic formula to solve each equation.

1.
$$x^2 - 19x + 70 = 0$$
 2. $x^2 + 32x + 175 = 0$ **3.** $2x^2 + 37x - 19 = 0$

3.
$$2x^2 + 37x - 19 = 0$$

-19: 0.5

4.
$$x^2 - 10x = 75$$
 5. $x^2 + x = 132$ **6.** $6x^2 + 13x = 28$

7.
$$20x^2 + 11x = 3$$

$$-\frac{3}{4}$$
; $\frac{1}{5}$

$$8. \ 4x^2 + 24x = -39$$

7.
$$20x^2 + 11x = 3$$
 8. $4x^2 + 24x = -35$ **9.** $15x^2 + 20 = 40x$

$$2; \frac{2}{3}$$

Reteaching (continued)

The Quadratic Formula and the Discriminant

In the quadratic equation, the expression under the radical sign, $b^2 - 4ac$, is called the discriminant. Consider the quadratic formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- If $b^2 4ac$ is a negative number, the square root cannot be found in the real numbers. There are no real-number solutions of the equation. The graph of the quadratic does not cross the *x*-axis.
- If $b^2 4ac$ equals 0, $x = \frac{-b \pm \sqrt{0}}{2a}$ or $\frac{-b}{2a}$. There is only one solution of the equation. The vertex of the quadratic is on the *x*-axis.
- If $b^2 4ac$ is a positive number, there are two solutions of the equation, $\frac{-b-\sqrt{b^2-4ac}}{2a}$ and $\frac{-b+\sqrt{b^2-4ac}}{2a}$. The graph of the quadratic intersects the *x*-axis twice.

Problem

What is the number of solutions of $x^2 + 13 = -5x$?

First rewrite the equation in the form $ax^2 + bx + c = 0$.

$$x^2 + 13 = -5x$$

$$x^2 + 5x + 13 = 0$$

Add 5x to each side.

Therefore, a = 1, b = 5, and c = 13.

$$b^2 - 4ac = 5^2 - 4(1)(13)$$
$$= -27$$

Since $b^2 - 4ac$ is a negative number, there are no real-number solutions of the equation.

Exercises

Find the number of solutions of each equation.

10.
$$4x^2 + 12x + 9 = 0$$
 11. $x^2 - 12x + 32 = 0$ **12.** $x^2 - 10x + 1 = 0$

$$2. x^2 - 10x + 1 = 0$$

13.
$$3x^2 + 6x + 8 = 0$$
 14. $3x^2 - 5x = -6$ **15.** $x^2 + 100 = 20x$

14.
$$3x^2 - 5x = -6$$

15.
$$x^2 + 100 = 20x$$

no real solutions

16.
$$5x^2 - 7x = 2$$
 17. $9x^2 + 4 = 12x$ **18.** $3x^2 + 5x = 2$

one

two

17.
$$9x^2 + 4 = 12x$$

18.
$$3x^2 + 5x = 2$$