Reteaching

Completing the Square

You have learned to square binomials. Notice how the coefficient of the a term is related to the constant value in every perfect-square trinomial.

$$(a+1)^2 = (a+1)(a+1) = a^2 + 2a + 1 \rightarrow \left(\frac{2}{2}\right)^2 = 1$$

$$(a-1)^2 = (a-1)(a-1) = a^2 - 2a + 1 \rightarrow \left(\frac{-2}{2}\right)^2 = 1$$

$$(a-2)^2 = (a-2)(a-2) = a^2 - 4a + 4 \rightarrow \left(\frac{-4}{2}\right)^2 = 4$$

$$(a + 3)^2 = (a + 3)(a + 3) = a^2 + 6a + 9 \rightarrow \left(\frac{6}{2}\right)^2 = 9$$

In each case, half the coefficient of the *a* term squared equals the constant term. You can use this pattern to find the value that makes a trinomial a perfect square.

Problem

What is the value of c such that $x^2 - 14x + c$ is a perfect-square trinomial?

The coefficient of the *x* term is -14. Using the pattern, $c = \left(\frac{-14}{2}\right)^2$ or 49. So, $x^2 - 14x + 49$ is a perfect-square trinomial.

Exercises

Find the value of *c* such that each expression is a perfect-square trinomial.

1.
$$a^2 + 8a + c$$
 16

2.
$$x^2 - 16x + c$$
 64

3.
$$m^2 + 20m + c$$
 100

4.
$$p^2 - 14p + c$$

4.
$$p^2 - 14p + c$$
 49 5. $y^2 - 10y + c$ **25 6.** $b^2 + 18b + c$ **81**

6.
$$b^2 + 18b + c$$
 81

7.
$$d^2 + 12d + c$$
 36

8.
$$n^2 - n + c$$

7.
$$d^2 + 12d + c$$
 36 8. $n^2 - n + c$ $\frac{1}{4}$ **9.** $w^2 + 3w + c$ $\frac{9}{4}$

Reteaching (continued)

Completing the Square

You can use completing the square to solve quadratic equations.

Problem

What are the solutions of the equation $x^2 + 2x - 48 = 0$?

First rewrite the equation so that the constant is on one side of the equation and the other terms are on the other side.

$$x^2 + 2x - 48 = 0$$

$$x^2 + 2x - 48 + 48 = 0 + 48$$

$$x^2 + 2x = 48$$

Add 48 to each side,

Since $\left(\frac{2}{2}\right)^2 = 1$, add 1 to each side.

$$x^2 + 2x + 1 = 48 + 1$$

$$(x+1)^2 = 49$$

$$x + 1 = \pm \sqrt{49}$$

$$x+1=\pm 7$$

$$x + 1 = -7$$

$$x + 1 - 1 = -7 - 1$$

$$x = -8$$

Add 1 to each side.

Take the square root of each side.

$$x + 1 = 7$$

$$x + 1 - 1 = 7 - 1$$

$$x = 6$$

The solutions are -8 and 6.

Exercises

Solve each equation by completing the square. If necessary, round to the nearest hundredth.

10.
$$b^2 + 10b = 75$$

-15; -1

4: -2

11.
$$y^2 - 18y = 63$$

or

or

14.
$$t^2 + 8t - 9$$

16.
$$m^2 - 2m - 8 = 0$$
 17. $s^2 + 6s + 1 = 0$ **18.** $v^2 + 4v - 2 = 0$

10.
$$b^2 + 10b = 75$$
 11. $y^2 - 18y = 63$ **12.** $n^2 - 20n = -75$

13.
$$a^2 + 16a = -15$$
 14. $t^2 + 8t - 9 = 0$ **15.** $h^2 - 12h - 9 = 0$ **17. 19. 1**

$$18. \ v^2 + 4v - 2 = 0$$