Reteaching

Quadratic Functions

Recall that the general equation for a quadratic function is $y = ax^2 + bx + c$. Using this general equation, the equation for the axis of symmetry is $x = \frac{-b}{2a}$. Since the vertex lies on the axis of symmetry, the x-coordinate of the vertex is $\frac{-b}{2a}$

Problem

What are the equation of the axis of symmetry and the coordinates of the vertex of the graph of $y = 3x^2 + 6x - 4$?

$$x = \frac{-b}{2a}$$

 $x = \frac{-b}{2a}$ Equation for axis of symmetry

$$x = \frac{-6}{2(3)}$$

$$x = \frac{-6}{2(3)}$$
 $a = 3$ and $b = 6$

$$x = -1$$

Simplify.

Now, find the value of y when x = -1.

$$y = 3x^2 + 6x - 4$$

$$y = 3(-1)^2 + 6(-1) - 4$$

$$y = -7$$

The equation of the axis of symmetry is x = -1 and the coordinates of the vertex of the graph are (-1, -7).

Exercises

Find the equation of the axis of symmetry and the coordinates of the vertex of the graph of each function.

1.
$$y = x^2 + 8x$$

$$(-4, -16); x = -4$$

2.
$$y = 2x^2 + 12x + 10$$

$$(-3, -8); x = -3$$

1.
$$y = x^2 + 8x$$

(-4, -16); $x = -4$

2. $y = 2x^2 + 12x + 10$
3. $y = -x^2 + 4x - 8$
(2, -4); $x = 2$

4.
$$y = 2x^2 - 4x - 5$$

$$(1, -7); x = 1$$

4.
$$y = 2x^2 - 4x - 5$$
 5. $y = -3x^2 + 18x - 25$ **6.** $y = -2x^2 + 2x - 6$

$$(3, 2); x = 3$$

6.
$$y = -2x^2 + 2x - 6$$

$$(3,2); X=3$$

$$\left(\frac{1}{2}, -\frac{11}{2}\right); x = \frac{1}{2}$$

7.
$$f(x) = 6x^2 - 6x^2$$

$$(0, -7), x = 0$$

7.
$$f(x) = 6x^2 - 7$$
 8. $f(x) = -5x^2 - 10x + 1$ **9.** $f(x) = 4x^2 - 16x - 2$

$$(-1, 6); x = -1$$
 $(2, -18); x = 2$

$$9. f(x) = 4x^2 - 16x - 1$$

$$(2, -18); x = 2$$

Reteaching (continued)

Quadratic Functions

You can use the axis of symmetry and the vertex to help graph a quadratic equation. Use the equation $x = -\frac{b}{2a}$ to find the equation of the axis of symmetry. Because the vertex lies on the axis of symmetry, this value is also the *x*-coordinate of the vertex.

Problem

What is the graph of $y = 2x^2 - 4x + 1$?

1. Find the equation of the axis of symmetry.

$$x = \frac{-b}{2a}$$

$$x = \frac{-(-4)^{2}}{2(2)}$$

$$x = \frac{-(-4)}{2(2)}$$
 $a = 2$ and $b = -4$

$$x = 1$$

Simplify.

2. Find the vertex.

$$y = 2x^2 - 4x + 1$$

$$y = 2(1^2) - 4(1) + 1$$
 $x = 1$

$$y = -1$$

Simplify.

The vertex is (1, -1)

- **3.** Graph the axis of symmetry x = 1 and the vertex (1, -1).
- **4.** Find a couple points on the graph.

For
$$x = 0$$
, $y = 2(0^2) - 4(0) + 1$ or 1.

Plot (0, 1).

For
$$x = -1$$
, $y = 2(-1)^2 - 4(-1) + 1$ or 7.

Plot
$$(-1, 7)$$
.

5. Use the axis of symmetry to complete the graph.

Exercises

Graph each function. Label the axis of symmetry and the vertex.

