Reteaching

Quadratic Graphs and Their Properties

A U-shaped graph such as the one at the right is called a parabola.

- A parabola can open upward or downward.
- A parabola that opens upward has a minimum or lowest point.
- A parabola that opens downward has a maximum or highest point.
- The **vertex** of a parabola is its minimum or maximum point.

All parabolas have a line or axis of symmetry.

Problem

What is the vertex of the graph below? Is it a minimum or maximum?

The graph opens downward, so you are looking for the highest point. The vertex is (-3, 2) and it is a maximum.

Exercises

Identify the vertex of each graph. Tell whether it is a minimum or a maximum.

(3, 1); minimum

(1, -6); minimum

(-3, -1); maximum

Reteaching (continued)

Quadratic Graphs and Their Properties

Any function in the form $y = ax^2 + bx + c$ where $a \ne 0$ is called a **quadratic** function. The graph of a quadratic function is a parabola.

Problem

What is the graph of $y = \frac{1}{2}x^2 - 4$?

This is a quadratic function where $a = \frac{1}{2}$, b = 0 and c = -4. The graph will be a parabola. Use a table to find some points on the graph. Then use what you know about parabolas to complete the graph.

x	$y=\frac{1}{2}x^2-4$	(x, y)	
-4	$y=\frac{1}{2}(-4)^2-4=4$	(-4, 4)	
-2	$y=\frac{1}{2}(-2)^2-4=-2$	(-2, -2)	
0	$y=\frac{1}{2}(0)^2-4=-4$	(0, -4)	
2	$y=\frac{1}{2}(2)^2-4=-2$	(2, -2)	
4	$y=\frac{1}{2}(4)^2-4=4$	(4, 4)	

Exercises

Graph each function.

4.
$$y = -x^2 + 5$$

5.
$$y = x^2 - 4$$

6.
$$y = -x^2 - 1$$

