6-3

Reteaching

Solving Systems Using Elimination

Elimination is one way to solve a system of equations. Think about what the word "eliminate" means. You can eliminate either variable, whichever is easiest.

Problem

Solution The equations are already arranged so that like terms are in columns.

Notice how the coefficients of the *y*-variables have the opposite sign and the same value.

$$4x - 3y = -4$$
$$2x + 3y = 34$$
$$6x = 30$$

Add the equations to eliminate y.

$$x = 5$$

Divide both sides by 6 to solve for x.

$$4(5) - 3y = -4$$
$$20 - 3y = -4$$
$$-3y = -24$$

 $\nu = 8$

Substitute 5 for x in one of the original equations and solve for y.

The solution is (5, 8).

Check

$$4x - 3y = -4$$

$$4(5) - 3(8) \stackrel{?}{=} -4$$

$$20 - 24 \stackrel{?}{=} -4$$

$$-4 = -4 \checkmark$$

Substitute your solution into both of the original equations to check.

You can check the other equaton.

Exercises

Solve and check each system.

1.
$$3x + y = 3$$
 (0, 3) $-3x + y = 3$

2.
$$6x - 3y = -14 \left(\frac{2}{3}, 6\right)$$

 $6x - y = -2$

3.
$$3x - 2y = 10$$
 (2, -2)
 $x - 2y = 6$

4.
$$4x + y = 8$$
 (1, 4) $x + y = 5$

Reteaching (continued)

Solving Systems Using Elimination

If none of the variables has the same coefficient, you have to multiply before you eliminate.

Problem

Solve the following system of linear equations. $\begin{aligned}
-2x + 3y &= -1 \\
5x + 4y &= 6
\end{aligned}$

Solution

$$5(-2x - 3y) = (-1)5$$
$$2(5x + 4y) = (6)2$$

Multiply the first equation by 5 (all terms, both sides) and the second equation by 2. You can eliminate the x variable when you add the equations together.

$$-10x - 15y = -5$$
$$\frac{10x + 8y = 12}{-7y = 7}$$

Distribute, simplify and add.

$$y = -1$$
$$y + 4(-1) = 6$$

Divide both sides by 7.

$$5x + 4(-1) = 6$$

Substitute -1 in for y in the second equation to find the value of x.

$$5x - 4 = 6$$
$$5x = 10$$

Simplify.

x = 2

Add 4 to both sides. Divide by 5 to solve for x.

The solution is (2, -1).

Check

$$-2x + 3y = -1$$

Substitute your solution into both original equations.

$$-2(2) - 3(-1) \stackrel{?}{=} -1$$

$$-1 = -1$$

You can check the other equation.

Exercises

Solve and check each system.

5.
$$x - 3y = -3$$
 (9, 4) $-2x + 7y = 10$

6.
$$-2x - 6y = 0$$
 (-6, 2) $3x + 11y = 4$

7.
$$3x + 10y = 5$$
 $\left(1, \frac{1}{5}\right)$ $7x + 20y = 11$

8.
$$4x + y = 8$$
 (1, 4) $x + y = 5$