Reteaching

Reteaching

Parallel and Perpendicular Lines

Nonvertical lines are parallel if they have the same slope and different y-intercepts. The graphs of y = 2x - 6 and y = 2x + 3 are parallel because they have the same slope, 2, but different y-intercepts, -6 and 3.

Problem

What is an equation in slope-intercept form of the line that passes through (8, 7) and is parallel to the graph of $y = \frac{3}{4}x + 2$?

The slope of $y = \frac{3}{4}x + 2$ is $\frac{3}{4}$. Because the desired equation is for a line parallel to a line with slope $\frac{3}{4}$, the slope of the parallel line must also be $\frac{3}{4}$. Use the slope and the given point in the point-slope form of a linear equation and then solve for y to write the equation in slope-intercept form.

$$y - y_1 = m(x - x_1)$$
 Start with the point-slope form.

$$y - 7 = \frac{3}{4}(x - 8)$$
 Substitute (8, 7) for (x_1, y_1) and $\frac{3}{4}$ for m .

$$y - 7 = \frac{3}{4}x - 6$$
 Distributive Property

$$y = \frac{3}{4}x + 1$$
 Add 7 to each side.

The graph of $y = \frac{3}{4}x + 1$ passes through (8, 7) and is parallel to the graph of $y = \frac{3}{4}x + 2$.

Exercises

1. Writing Are the graphs of $y = \frac{2}{5}x + 3$ and $y = \frac{3}{5}x - 4$ parallel? Explain

No, because the slopes $\frac{2}{5}$ and $\frac{3}{5}$ are not equal.

Write an equation in slope-intercept form of the line that passes through the given point and is parallel to the graph of the given equation.

2.
$$(3, 1)$$
; $y = 2x + 4$

2.
$$(3, 1); y = 2x + 4$$
 3. $(1, 3); y = 7x + 5$ **4.** $(1, 6); y = 9x - 5$

4.
$$(1, 6)$$
; $y = 9x - 5$

$$y=2x-5$$

$$y=7x-4$$

$$y=9x-3$$

5.
$$(0,0)$$
; $y = -\frac{1}{2}y - 4$

5.
$$(0,0); y = -\frac{1}{2}y - 4$$
 6. $(-5,7); y = -\frac{2}{5}x - 3$ **7.** $(6,6); y = \frac{1}{3}x - 1$

7. (6, 6);
$$y = \frac{1}{3}x - 1$$

$$y=-\frac{1}{2}x$$

$$y = -\frac{2}{5}x + 5 y = \frac{1}{3}x + 4$$

$$y=\frac{1}{3}x+4$$

Rereaching (continued)
Parallel and Perpendicular Lines

Two lines that are neither horizontal nor vertical are perpendicular if the product of their slopes is -1. The graphs of $y = -\frac{4}{5}x - 5$ and $y = \frac{5}{4}x + 4$ are perpendicular because $-\frac{4}{5}\left(\frac{5}{4}\right) = -1$.

Problem

What is an equation in slope-intercept form of the line that passes through (2, 11) and is perpendicular to the graph of $y = \frac{1}{4}x - 5$?

The slope of $y = \frac{1}{4}x - 5$ is $\frac{1}{4}$. Since $\frac{1}{4}(-4) = -1$, the slope of the line perpendicular to the given line is -4.

Use this slope and the given point to write an equation in point-slope form. Then solve for *y* to write the equation in slope-intercept form.

$$y - y_1 = m(x - x_1)$$
 Start with the point-slope form.

$$y - 11 = -4(x - 2)$$
 Substitute (2, 11) for (x_1, y_1) and -4 for m .

$$y - 11 = -4x + 8$$
 Distributive Property
 $y = -4x + 19$ Add 11 to each side,

The graph of y = -4x + 19 passes through (2, 11) and is perpendicular to the graph of $y = \frac{1}{4}x - 5$.

Exercises

8. Writing Are the graphs of $y = \frac{2}{3}x + 6$ and $y = -\frac{3}{2}x - 4$ parallel, perpendicular, or neither? Explain how you know.

perpendicular; the slopes $\frac{2}{3}$ and $-\frac{2}{3}$ have a product of -1

Write an equation in slope-intercept form of the line that passes through the given point and is perpendicular to the graph of the given equation.

9.
$$(5, -3)$$
; $y = 5x + 3$ **10.** $(4, 8)$; $y = -2x - 4$ **11.** $(-2, -5)$; $y = x + 3$

$$y = -\frac{1}{5}x - 2 y = \frac{1}{2}x + 6$$

11.
$$(-2, -5)$$
; $y = x + 3$

2. (6, 0);
$$y = \frac{3}{2}x - 6$$

13.
$$(5,3)$$
; $y = 5x + 2$

12.
$$(6,0); y = \frac{3}{2}x - 6$$
 13. $(5,3); y = 5x + 2$ **14.** $(7,1); y = -\frac{7}{2}x + 6$

$$y = -\frac{2}{3}x + 4$$
 $y = -\frac{1}{5}x + 4$ $y = \frac{2}{7}x - 1$

$$y = -\frac{1}{5}x + 4$$

$$y = \frac{2}{7}x - 1$$

y = -x - 7