10-5 Reteaching Graphing Square Root Functions

You can find the domain of a square root function by setting the values inside the radicand greater than or equal to zero. The domain tells you the limits of the x-values for a function. Use the domain to then find the range, which is the limit of the y-values. Knowing the domain saves time when developing coordinate pairs to graph for a square root function.

Problem

What are the domain and range of the function $y = 4\sqrt{-x + 6}$?

The domain of a square root function must be greater than or equal to zero because there is no real square root of a negative radicand. Remember that while the radicand must not be negative, the x- and y-values of a function may be either positive or negative.

Solve

$$y = 4\sqrt{-x + 6}$$
$$-x + 6 \ge 0$$
$$-x \ge -6$$

The radicand must not be negative.

Subtract 6 from both sides to isolate the variable.

 $x \leq 6$

Divide both sides by -1 to solve for x. Switch the direction of the inequality sign when you divide by a negative.

Check

	x	у	
	6 5	0)
	5	4)
	2	8)
	-3	12)
	-10	16)
	-19	20)
٦			

Create a table of values, What values of x will assure you always get a radicand value that is greater than or equal to 0?

Only values less than or equal to 6 will give you x-values that are greater than or equal to 0.

The range indicated by the table includes all y-values that are greater than or equal to 0.

Solution: The domain of the function $y = 4\sqrt{-x + 6}$ is $x \le 6$ and the range is $y \ge 0$.

Exercises

Find the domain and range of each function.

1.
$$y = \sqrt{x} + 12$$

$$D: x \ge 0; \ R: y \ge 12$$

D:
$$x \le \frac{1}{5}$$
; R: $y \ge 0$ D: $x \ge -2$; R: $y \ge 0$

2.
$$y = \sqrt{2x - 3}$$

1.
$$y = \sqrt{x} + 12$$
 2. $y = \sqrt{2x - 3}$ D: $x \ge 0$; $R: y \ge 12$ D: $x \ge \frac{3}{2}$; $R: y \ge 0$

4.
$$y = \sqrt{-5x + 1}$$
 5. $y = \frac{1}{2}\sqrt{x + 2}$ **6.** $y = \sqrt{7(x - 2)}$

3.
$$y = \sqrt{1.5x + 6}$$

$$D: x \ge -4; R: y \ge 0$$

6.
$$y = \sqrt{7(x-2)}$$

$$D: x \geq 2; R: y \geq 0$$

Reteaching (continued)

Graphing Square Root Functions

The domain and range of a function tell you where to start the graph of a square root function.

Problem

What is the graph of $y = \sqrt{x-4}$?

Find the domain and create a table of values. Then plot the coordinate pairs to graph the function.

Solve

$$y = \sqrt{x - 4}$$

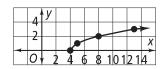
$$x \ge 4$$

	Х	у	
	4	0	
	5	1	
	8	2	
	13	3	
٦			Γ

Find the domain of the function.

Create a table of values to generate some coordinate pairs.

Notice that choosing values for \boldsymbol{x} that make the radicand a perfect square creates integer coordinate pairs, which will make it easier to graph.



Graph the coordinate pairs from the table.

Check

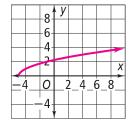
Use the rules for transforming a graph to check your graph.

For any positive number h, graphing $y = \sqrt{x - h}$ translates the graph of $y = \sqrt{x}$ to the right h units. For the function $y = \sqrt{x-4}$, h = 4, so the graph of $y = \sqrt{x}$ must move 4 units to the right.

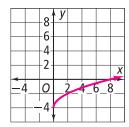
Exercises

Graph each function.

7.
$$y = \sqrt{x+5}$$



8.
$$y = \sqrt{2x} - 4$$



9.
$$y = \sqrt{x+1} + 1$$

