Reteaching

Operations with Radical Expressions

You can use the Distributive Property with radical expressions.

Problem

What is the simplified form of $4\sqrt{2} - \sqrt{18}$?

You need to simplify the radical expressions before you know if there are any like radicals that can be subtracted.

Solve

$$4\sqrt{2}-\sqrt{18}$$

 $\sqrt{18} = \sqrt{3 \cdot 3 \cdot 2}$ $=\sqrt{(3\cdot 3)\cdot 2}=\sqrt{3^2\cdot 2}$

$$=3\sqrt{2}$$

 $4\sqrt{2} - \sqrt{18} = 4\sqrt{2} - 3\sqrt{2}$

 $= (4 - 3)\sqrt{2}$

 $=1\cdot\sqrt{2}$

Check

 $= \sqrt{2}$

 $4\sqrt{2} - \sqrt{18} = \sqrt{2}$ $3\sqrt{2} - \sqrt{18} = 0$

 $3\sqrt{2} = \sqrt{18}$

 $3\sqrt{2} = 3\sqrt{2}$

Look for a common radical in $4\sqrt{2}$ and $\sqrt{18}$, $4\sqrt{2}$ is factored completely, but $\sqrt{18}$ can be factored further.

Factor $\sqrt{18}$ completely.

Find pairs of factors that you can factor out. These are perfect-square factors.

Remove the perfect-square factor.

Now you can see that each term in the expression shares the common radical $\sqrt{2}$.

Use the Distributive Property to combine like radicals.

 $a\sqrt{b} - c\sqrt{b} = (a - c)\sqrt{b}$

Subtract.

Simplify.

Check your solution.

Subtract $\sqrt{2}$ from both sides,

Add $\sqrt{18}$ to both sides.

Simplify $\sqrt{18}$.

Solution: The simplified form of $4\sqrt{2} - \sqrt{18}$ is $\sqrt{2}$.

Exercises

Simplify each sum or difference.

1.
$$2\sqrt{5} - 4\sqrt{5}$$
 2. $\sqrt{7} + \sqrt{7}$ **2.** $\sqrt{7}$ **3.** $3\sqrt{6} + 2\sqrt{6}$ **5.** $\sqrt{6}$

2.
$$\sqrt{7} + \sqrt{7} \ 2\sqrt{7}$$

3.
$$3\sqrt{6} + 2\sqrt{6}$$
 5 $\sqrt{}$

4.
$$5\sqrt{2} + \sqrt{32} \ 9\sqrt{2}$$

5.
$$3\sqrt{3} - \sqrt{75}$$
 -2 $\sqrt{3}$

4.
$$5\sqrt{2} + \sqrt{32}$$
 9 $\sqrt{2}$ **5.** $3\sqrt{3} - \sqrt{75}$ **-2** $\sqrt{3}$ **6.** $4\sqrt{54} + 2\sqrt{24}$ **16** $\sqrt{6}$

7.
$$10\sqrt{5} - 5\sqrt{20}$$
 0

8.
$$2\sqrt{8} + \sqrt{200}$$
 14 $\sqrt{2}$

8.
$$2\sqrt{8} + \sqrt{200}$$
 14 $\sqrt{2}$ **9.** $3\sqrt{12} + \sqrt{108}$ **12** $\sqrt{3}$

Reteaching (continued)

Operations with Radical Expressions

When you have two binomial factors that include radical expressions, treat them like any other binomials and multiply using FOIL (First, Outer, Inner, Last).

Problem

What is the simplified form of $(2\sqrt{3} + 5\sqrt{7})(3\sqrt{7} - \sqrt{3})$?

Solve

Use FOIL to find the product of each pair of terms. Multiply the coefficients and then multiply the radicals. Remove all perfect-square factors.

First: $2\sqrt{3} \cdot 3\sqrt{7} = 6\sqrt{21}$

Outer:
$$2\sqrt{3} \cdot (-\sqrt{3}) = -2\sqrt{9} = -2 \cdot 3 = -6$$

Inner:
$$5\sqrt{7} \cdot 3\sqrt{7} = 15\sqrt{49} = 15 \cdot 7 = 105$$

Last:
$$5\sqrt{7} \cdot (-\sqrt{3}) = -5\sqrt{21}$$

$$=6\sqrt{21}-6+105-5\sqrt{21}$$

$$=(6\sqrt{21}-5\sqrt{21})+(-6+105)$$
 Group like terms.

$$=(6-5)\sqrt{21}+99$$
 Distributive Property

$$= 1\sqrt{21} + 99 = \sqrt{21} + 99$$
 Simplify.

Solution: The simplified form of $(2\sqrt{3} + 5\sqrt{7})(3\sqrt{7} - \sqrt{3})$ is $\sqrt{21} + 99$.

Exercises

Simplify each radical expression.

10.
$$\sqrt{4}(\sqrt{3} + \sqrt{5})$$

$$2\sqrt{3}+2\sqrt{5}$$

13.
$$-\sqrt{8}(5 - 3\sqrt{5})$$

-10 $\sqrt{2} + 6\sqrt{10}$

16.
$$(3\sqrt{7} + \sqrt{3})^2$$
 66 + 6 $\sqrt{21}$

11.
$$\sqrt{10}(\sqrt{8} - 9)$$

$$4\sqrt{5} - 9\sqrt{10}$$

14.
$$4\sqrt{6}(\sqrt{2} + 4\sqrt{3})$$
 15. $2\sqrt{6}(\sqrt{11} + 7)$

$$8\sqrt{3} + 48\sqrt{2}$$

17.
$$(1 + \sqrt{3})(1 - \sqrt{3})$$

11.
$$\sqrt{10}(\sqrt{8} - 9)$$
 12. $2\sqrt{3}(2 - \sqrt{3})$

$$4\sqrt{3} - 6$$

15.
$$2\sqrt{6}(\sqrt{11} + 7)$$

$$2\sqrt{66} + 14\sqrt{6}$$

17.
$$(1 + \sqrt{3})(1 - \sqrt{3})$$

18. $(3\sqrt{6} + 2\sqrt{2})(\sqrt{2} - 4\sqrt{6})$
-10 $\sqrt{3}$ - 68