Reteaching

Simplifying Radicals

You can remove perfect-square factors from a radicand.

Problem

What is the simplified form of $\sqrt{80n^5}$?

In the radicand, factor the coefficient and the variable separately into perfect square factors, and then simplify. Factor 80 and n^5 completely and then find paired factors.

Solve

$$80 = 8 \cdot 10 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 5$$

$$= (2 \cdot 2)(2 \cdot 2) \cdot 5 = (2 \cdot 2)^{2} \cdot 5$$

$$\sqrt{80} = \sqrt{4^{2} \cdot 5} = \sqrt{4^{2}} \cdot \sqrt{5}$$

$$= 4 \cdot \sqrt{5} = 4\sqrt{5}$$

$$n^{5} = n \cdot n \cdot n \cdot n \cdot n$$

$$= (n \cdot n) \cdot (n \cdot n) \cdot n = (n \cdot n)^{2} \cdot n$$

$$\sqrt{n^{5}} = \sqrt{(n \cdot n)^{2}} \cdot \sqrt{n}$$

$$= n^{2} \cdot \sqrt{n} = n^{2} \sqrt{n}$$

$$\sqrt{80n^{5}} = 4 \cdot n^{2} \sqrt{5 \cdot n} = 4n^{2} \sqrt{5n}$$

Check

$$\sqrt{80n^5} \stackrel{?}{=} 4n^2\sqrt{5n}$$

$$\frac{\sqrt{80n^5}}{\sqrt{5n}} \stackrel{?}{=} \frac{4n^2\sqrt{5n}}{\sqrt{5n}}$$

$$\sqrt{16n^4} \stackrel{?}{=} 4n^2$$

$$4n^2 = 4n^2 \checkmark$$

Solution: The simplified form of $\sqrt{80n^5}$ is $4n^2\sqrt{5n}$.

Factor 80 completely.

Find pairs of factors.

Use the rule $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$.

The square root of a number squared

is the number: $\sqrt{a^2} = a$.

Factor n^5 completely.

Find pairs of factors.

Separate the factors.

Remove the perfect square.

Combine your answers.

Check your solution.

Divide both sides by $\sqrt{5n}$.

Simplify.

Exercises

Simplify each radical expression.

1.
$$\sqrt{100n^3}$$
 10 $n\sqrt{n}$

2.
$$\sqrt{120b^4}$$
 2 $b^2\sqrt{30}$ 3. $\sqrt{66t^5}$ $t^2\sqrt{66t}$

3.
$$\sqrt{66t^5}$$
 $t^2\sqrt{66t}$

4.
$$\sqrt{32x}$$
 4 $\sqrt{2x}$

5.
$$\sqrt{525c^7}$$
 5c³ $\sqrt{21c}$

6.
$$\sqrt{86t^2}$$
 $t\sqrt{86}$

7.
$$\sqrt{50g^3}$$
 5 $g\sqrt{2g}$ 8. $\sqrt{54h^6}$ 3 $h^3\sqrt{6}$

8.
$$\sqrt{54h^6}$$
 3h³ $\sqrt{6}$

9.
$$\sqrt{35y}$$
 $\sqrt{35y}$

10-2

Reteaching (continued)

Simplifying Radicals

Problem

What is the simplified form of $\sqrt{\frac{27t^4}{48t^2}}$?

Begin by cancelling the common factors in the numerator and denominator. Simplify the numerator and denominator separately when the denominator is a perfect square. Remember that the radical is not simplified if there is a radical in the denominator. Multiply to remove the radical from the denominator.

Solve

$$\sqrt{\frac{27t^3}{48t^4}} = \sqrt{\frac{3\cdot 3\cdot 3\cdot t\cdot t\cdot t}{3\cdot 4\cdot 4\cdot t\cdot t\cdot t\cdot t}}$$

Factor the numerator and denominator completely.

$$=\sqrt{\frac{\cancel{3}\cdot\cancel{3}\cdot\cancel{3}\cdot\cancel{4}\cdot\cancel{4}\cdot\cancel{4}}{\cancel{3}\cdot\cancel{4}\cdot\cancel{4}\cdot\cancel{4}\cdot\cancel{4}\cdot\cancel{4}\cdot\cancel{4}}}$$

Cancel the common factors.

$$=\frac{\sqrt{(3\cdot 3)}}{\sqrt{(4\cdot 4)t}}=\frac{\sqrt{3^2}}{\sqrt{4^2t}}$$

Find pairs of factors. These are the perfectsquare factors.

$$=\frac{3}{4\sqrt{t}}$$

Simplify the numerator and denominator separately to remove the perfect-square factors, $\sqrt{3^2} = 3$ and $\sqrt{4^2t} = 4\sqrt{t}$

$$=\frac{3}{4\sqrt{t}}\frac{(\sqrt{t})}{(\sqrt{t})}$$

Multiply the numerator and denominator by \sqrt{t} to remove \sqrt{t} from the denominator.

$$=\frac{3\sqrt{t}}{4\sqrt{t\cdot t}}=\frac{3\sqrt{t}}{4\sqrt{t^2}}=\frac{3\sqrt{t}}{4t}$$

Remove the perfect-square factor from the denominator.

Solution: The simplified form of $\sqrt{\frac{27t^3}{48t^4}}$ is $\frac{3\sqrt{t}}{4t}$.

Exercises

Simplify each radical expression.

10.
$$\sqrt{\frac{49}{81}}$$
 $\frac{7}{9}$

11.
$$\sqrt{\frac{18x^4}{200}} \frac{3x^2}{10}$$

12.
$$\sqrt{\frac{28s}{s^3}} = \frac{2\sqrt{7}}{s}$$

13.
$$\sqrt{\frac{25a^5}{9a^7}} \frac{5}{3a}$$

14.
$$\sqrt{\frac{40b^4}{12b^3}} \frac{\sqrt{30b}}{3}$$

15.
$$\sqrt{\frac{48}{6t^6}}$$
 $\frac{2\sqrt{2}}{t^3}$

16.
$$\sqrt{\frac{50z^3}{4x^2}} \frac{5z\sqrt{2z}}{2x}$$

17.
$$\sqrt{\frac{t^5}{64}} = \frac{t^2\sqrt{t}}{8}$$

18.
$$\sqrt{\frac{32t}{t}}$$
 4 $\sqrt{2}$