7-6 Graphing Exponential Functions

Determine whether each rule represents exponential growth or decay. Explain how you know.

1. $y = 4 \cdot 3^x$

Exponential growth. The base (3), is greater than one.

(2)

3. Graph the exponential function $y = 3 \cdot 2^x$

	· · · · · · · · · · · · · · · · · · ·	
Х	Work	y
-2	$3 \cdot 2^{-1} = 3 \cdot \frac{1}{4}$	34
-1	3.27 = 3/2	3 2
0	3.20 = 3.1	3
1	3.2' = 3.2	6
2	3-22 = 3.4	12
3	3.2 ³ = 3.8	24

- 4. A computer valued at \$1900 loses 25% of its value each year.
 - a. Write a function rule that models the value of the computer.

b. Find the value of the computer after 3 years.

(1)

- Suppose the population of a certain insect is modeled by the function $f(x) = 1600 \cdot 2^x$, where x is the number of years. How many insects will there be after 3 years? (Round to the nearest whole number)

(1)

$$f(3) = 1600(2)^3$$

= 1600(8)= 12,800