Lesson 7-3

Exponents Rule Again

e will continue our work with exponents. In this activity, you will develop another exponent rule allowing you to work with even more types of exponential expressions.

- 1. Assuming the information available on the internet doubles every year, how much information will be available ...
 - a. 4 years from now?
 - $2^4 \cdot 2^4 = (2^4)^{\square} =$ b. 4 years from then?
 - $2^4 \cdot 2^4 \cdot 2^4 = (2^4)^{\square} =$ c. 4 years from then?
 - d. 4 years from now, 4 years from then $\underline{\text{and}}$ 4 years from then means _____ years from now or 2^{\square}
- 2. Suppose the amount of information available on the web is x times as much every year. How much information will be available ...
 - a. 3 years from now?
- b. 3 years from then?
- $x^3 \cdot x^3 = (x^3)^2 =$
- c. 3 years from then?
- $\underline{x^3 \cdot x^3 \cdot x^3} = (x^3)^{\square} =$
- d. 3 years from then?
- $x^3 \cdot x^3 \cdot x^3 \cdot x^3 = (x^3)^{\square} =$
- e. 3 years from then?
- $x^3 \cdot x^3 \cdot x^3 \cdot x^3 \cdot x^3 = (x^3)$
- f. 3 years from now, 3 years from then, 3 years from then, 3 years from then, and 3 years from then means _____ years from now or x^{\square}
- 3. What is a shortcut for problems like these? Explain.

Power of a Power Rule - (Part of Skill 12)

When raising a power to another power, multiply the exponents.

$$\left(b^{m}\right)^{n}=b^{m\cdot n}$$

- 4. Use exponent rules to simplify and write each expression with one positive exponent.
 - a. $(3^{12})^2 =$

b. $(2^3)^7 =$

c. $(x^8)^2 =$

d. $(6^0)^{-4} =$

- e. $(p^{-6})^{-3} =$
- f. $(5^{-4})^3 =$

g. $(y^{-7})^9 =$

h. $(m^{10})^0 =$

i. $(c^{-8})^{-3} =$

Property Raising a Product to a Power

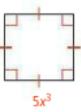
Words To raise a product to a power, raise each factor to the power and multiply.

Algebra $(ab)^n = a^n b^n$, where $a \neq 0$, $b \neq 0$, and n is a rational number

Examples $(3x)^4 = 3^4x^4 = 81x^4$

$$(4b)^{\frac{3}{2}} = 4^{\frac{3}{2}}b^{\frac{3}{2}} = 8b^{\frac{3}{2}}$$

Problem 3 Simplifying a Product Raised to a Power


Multiple Choice Which expression represents the area of the square?

A 10x3

C 25x5

B 5x6

D 25x6

Got It? 3. What is the simplified form of each expression?

a.
$$(7m^9)^3$$

b.
$$(2z)^{-4}$$

c.
$$(3g^4)^{-2}$$

Problem 4 Simplifying an Expression With Products

What is the simplified form of $(n^{\frac{1}{2}})^{10}(4mn^{-\frac{2}{3}})^3$?

Got It? 4. What is the simplified form of each expression?

a.
$$(x^{-2})^2(3xy^5)^4$$
 b. $(3c^{\frac{5}{2}})^4(c^2)^3$

h
$$(3c^{\frac{5}{2}})^4(c^2)^3$$

c.
$$(6ab)^3(5a^{-3})^2$$

Problem 5 Raising a Number in Scientific Notation to a Power SIEM

Aircraft The expression $\frac{1}{2}mv^2$ gives the kinetic energy, in joules, of an object with a mass of m kg traveling at a speed of v meters per second. What is the kinetic energy of an experimental unmanned jet with a mass of 1.3 \times 10³ kg traveling at a speed of about 3.1 \times 10³ m/s?