Lesson 10-2 Simplifying Radicals

Sometimes you can simplify radical expressions that contain variables. A variable with an even exponent is a perfect square. A variable with an odd exponent is the product of a perfect square and the variable. For example, $n^3 = n^2 \cdot n$, so $\sqrt{n^3} = \sqrt{n^2 \cdot n}$. In this lesson, assume that all variables in radicands represent nonnegative numbers.

Problem 2 Removing Variable Factors

What is the simplified form of $\sqrt{54n^7}$?

Got lt? 2. What is the simplified form of $-m\sqrt{80m^9}$?

You can use the Multiplication Property of Square Roots to write $\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$.

Problem 3 Multiplying Two Radical Expressions

What is the simplified form of $2\sqrt{7t} \cdot 3\sqrt{14t^2}$?

Got It?	3. What is the simplifie	ed form of each expression in j	parts (a)-(c)?
	a. $3\sqrt{6} \cdot \sqrt{18}$	b. $\sqrt{2a} \cdot \sqrt{9a^3}$	c. $7\sqrt{5x} \cdot 3\sqrt{20x^5}$

Practice 10 2	Simplifying Radicals	
Simplify each radical expression 1. $\sqrt{169}$	1. Show all work! 2. √200	3. √ <u>125</u>
4 . −5√112	5. √68	6. 3√121
7. √63 <i>t</i> ⁴	8 . −2 <i>b</i> √136 <i>b</i> ²	

9. $\sqrt{30} \cdot \sqrt{6}$	10. $\sqrt{5} \cdot \sqrt{70}$	11 . 2√3•√96
9. 150.10	10. 3. 470	11. 293.990

12. $-4\sqrt{7}\cdot\sqrt{42}$

13. $\sqrt{4a} \cdot \sqrt{12a^5}$

You can simplify some radical expressions using the following property.

Got lt? 6. What is the simplified form of each radical expression? **a.** $\frac{\sqrt{2}}{\sqrt{3}}$ Simplify each radical. Show all of your work.

More Practice 10-2

Complete the following examples with your teacher:

Simplify each radical expression.

Now you try one:

a.
$$\sqrt{\frac{13}{64}} =$$

a. $\sqrt{\frac{120}{10}} =$

b.
$$\sqrt{\frac{144}{9}} =$$

b. $\sqrt{\frac{48}{75}} =$

Simplify each radical expression.

a.

Now you try one:

$$\frac{3}{\sqrt{7}} =$$

b.
$$\frac{5}{\sqrt{2}} =$$

Simplify each radical expression:

1.
$$\sqrt{\frac{21}{49}} =$$
 2. $\sqrt{\frac{27}{4}} =$

3.
$$\sqrt{\frac{625}{100}} =$$
 4. $\sqrt{\frac{120}{121}} =$

5.
$$\sqrt{\frac{15}{5}} =$$
 6. $\sqrt{\frac{54}{24}} =$

7.
$$\sqrt{\frac{60}{5}} = 8. -\sqrt{\frac{160}{8}} =$$

9.
$$\frac{3}{\sqrt{2}} = 10. \frac{5}{\sqrt{5}} =$$

11.
$$\frac{9}{\sqrt{8}} =$$
 12. $\frac{12}{\sqrt{12}} =$

13.
$$\sqrt{12} \cdot \sqrt{75} =$$
 14. $\sqrt{26 \cdot 2} =$

15.
$$\frac{\sqrt{72}}{\sqrt{64}} =$$
 16. $\frac{\sqrt{180}}{\sqrt{3}} =$