Lesson 10-2 Simplifying Radicals

Sometimes you can simplify radical expressions that contain variables. A variable with an even exponent is a perfect square. A variable with an odd exponent is the product of a perfect square and the variable. For example, $n^{3}=n^{2} \cdot n$, so $\sqrt{n^{3}}=\sqrt{n^{2} \cdot n}$. In this lesson, assume that all variables in radicands represent nonnegative numbers.

Problem 2 Removing Variable Factors
 What is the simplified form of $\sqrt{54 n^{7}}$?

Got lt? 2. What is the simplified form of $-m \sqrt{80 m^{9}}$?

You can use the Multiplication Property of Square Roots to write $\sqrt{a} \cdot \sqrt{b}=\sqrt{a b}$.

Problem 3 Multiplying Two Radical Expressions

What is the simplified form of $2 \sqrt{7 t} \cdot 3 \sqrt{14 t^{2}}$?

Got lt? 3. What is the simplified form of each expression in parts (a)-(c)?
a. $3 \sqrt{6} \cdot \sqrt{18}$
b. $\sqrt{2 a} \cdot \sqrt{9 a^{3}}$
c. $7 \sqrt{5 x} \cdot 3 \sqrt{20 x^{5}}$

Simplify each radical expression. Show all work!

1. $\sqrt{169}$
2. $\sqrt{200}$
3. $\sqrt{125}$
4. $-5 \sqrt{112}$
5. $\sqrt{68}$
6. $3 \sqrt{121}$
7. $\sqrt{6} 6 t^{4}$
8. $-2 b \sqrt{ } 136 b^{2}$
9. $\sqrt{30} \cdot \sqrt{6}$
10. $\sqrt{5} \cdot \sqrt{70}$
11. $2 \sqrt{3} \cdot \sqrt{96}$
12. $-4 \sqrt{7} \cdot \sqrt{42}$
13. $\sqrt{4 a} \cdot \sqrt{12 a^{5}}$

You can simplify some radical expressions using the following property.

Property Division Property of Square Roots

Algebra
For $a \geq 0$ and $b>0, \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$.

Example

$\sqrt{\frac{36}{49}}=\frac{\sqrt{36}}{\sqrt{49}}=\frac{6}{7}$

Problem 5 Simplifying Fractions Within Radicals

What is the simplified form of each radical expression?
(A) $\sqrt{\frac{64}{49}}$
B $\sqrt{\frac{8 x^{3}}{50 x}}$

Got It? 5. What is the simplified form of each radical expression?
a. $\sqrt{\frac{144}{9}}$
b. $\sqrt{\frac{36 a}{4 a^{3}}}$
c. $\sqrt{\frac{25 y^{3}}{z^{2}}}$

Problem 6 Rationalizing Denominators

What is the simplified form of each expression?
A $\frac{\sqrt{3}}{\sqrt{7}}$
B $\frac{\sqrt{7}}{\sqrt{8 n}}$

Got It? 6. What is the simplified form of each radical expression?
a. $\frac{\sqrt{2}}{\sqrt{3}}$

Simplify each radical. Show all of your work.

1. $\sqrt{32}$
2. $\sqrt{\frac{17}{144}}$
3. $\sqrt{\frac{12}{225}}$
4. $\sqrt{12 x^{4}}$
5. $\frac{\sqrt{96}}{\sqrt{12}}$
$6 \cdot \frac{2}{\sqrt{6}}$
6. $\frac{7}{\sqrt{3}}$
7. $\frac{5}{\sqrt{2}}$
8. $\sqrt{\frac{17}{64}}$
9. $\sqrt{\frac{120}{10}}$
10. $\frac{4}{\sqrt{20}}$
$12 \cdot \frac{3 \sqrt{7}}{\sqrt{20}}$

Complete the following examples with your teacher:

Simplify each radical expression.
a. $\sqrt{\frac{13}{64}}=$

Now you try one:
b. $\sqrt{\frac{48}{75}}=$

Simplify each radical expression.
a. $\sqrt{\frac{120}{10}}=$
b. $\sqrt{\frac{144}{9}}=$

Now you try one:

Simplify each radical expression.
a. $\frac{3}{\sqrt{7}}=$
b. $\frac{5}{\sqrt{2}}=$

Now you try one:

Simplify each radical expression:

1. $\sqrt{\frac{21}{49}}=$
2. $\sqrt{\frac{27}{4}}=$
3. $\sqrt{\frac{625}{100}}=$
4. $\sqrt{\frac{120}{121}}=$
5. $\sqrt{\frac{15}{5}}=$
6. $\sqrt{\frac{54}{24}}=$
7. $\sqrt{\frac{60}{5}}=$
8. $-\sqrt{\frac{160}{8}}=$
9. $\frac{3}{\sqrt{2}}=$
10. $\frac{5}{\sqrt{5}}=$
11. $\frac{9}{\sqrt{8}}=$
12. $\frac{12}{\sqrt{12}}=$
13. $\sqrt{12} \cdot \sqrt{75}=$
14. $\sqrt{26 \cdot 2}=$
15. $\frac{\sqrt{72}}{\sqrt{64}}=$
16. $\frac{\sqrt{180}}{\sqrt{3}}=$
