

Lesson 12-8 Compound Events

A compound event is two or more events connected by the words "and" or "or."

When two events have no outcomes in common, the events are mutually exclusive events. If A and B are mutually exclusive events, then P(A and B) = 0. When events have at least one outcome in common, they are overlapping events.

You need to determine whether two events A and B are mutually exclusive before you can find P(A or B).

Key Concept Probability of A or B

Probability of Mutually Exclusive Events

If A and B are mutually exclusive events, P(A or B) = P(A) + P(B).

Probability of Overlapping Events

If A and B are overlapping events, P(A or B) = P(A) + P(B) - P(A and B).

Problem 1 Mutually Exclusive and Overlapping Events

Suppose you spin a spinner that has 20 equal-sized sections numbered from 1 to 20.

What is the probability that you spin a 2 or a 5?

$$P(2 \text{ or } 5) = \frac{1}{20} + \frac{1}{20} = \frac{2}{20} = \frac{1}{10} \text{ or } .10$$

What is the probability that you spin a number that is a multiple of 2 or 5?

2 14 5
P(MH 20-5) =
$$\frac{10}{20} + \frac{4}{4} - \frac{2}{2} = \frac{14 \cdot 2}{20} = \frac{12}{5}$$
 or .60

Gol-H? 1. Suppose you roll a standard number cube.

 $P(\text{even or } < 4) = \frac{3}{6} + \frac{3}{6} - \frac{1}{6} = \frac{5}{6} \text{ or } .833$ a. What is the probability that you roll an even number or a number less

b. What is the probability that you roll a 2 or an odd number?
$$P(2 \text{ or odd}) = \frac{1}{6} + \frac{3}{6} = \frac{4}{6} \text{ or } \frac{2}{3} \text{ or } .667$$

12-8 Practice Probability of Compound Events

Form G

Suppose you spin a spinner that has 12 equal-sized sections numbered 1 to 12. Find each probability, Remember not to count any numbers twice!

1.
$$P(3 \text{ or } 4) = \frac{1}{12} + \frac{1}{12} = \frac{2}{12} = \frac{1}{6}$$
 2. $P(\text{even or } 7) = \frac{6}{12} + \frac{1}{12} = \frac{7}{12}$

2.
$$P(\text{even or } 7) = \frac{6}{12} + \frac{1}{12} = \frac{7}{12}$$

3.
$$P(\text{even or odd}) = \frac{6}{12} + \frac{6}{12} = \frac{12}{12}$$

(4.) (multiple of 3 or odd) =
$$\frac{4}{12} + \frac{6}{12} - \frac{2}{12}$$

(5.)
$$P(\text{odd or multiple of 5}) = \boxed{1}$$

6.
$$P(\text{less than 5 or greater than 9}) = \boxed{1}$$

7.
$$P(\text{even or less than } 8) \in \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$

8.
$$P(\text{multiple of 2 or multiple of 3}) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

10.
$$P(\text{multiple of 5 or multiple of 2}) = \boxed{\frac{1}{12}}$$

11. The probability that Bob will make a free throw is $\frac{2}{5}$. What is the probability that Bob will make both of his next two free throws?

You choose a marble at random from a bag containing 3 blue marbles, 5 red marbles, and 2 green marbles. You replace the marble and then choose again. Find each probability.

12.
$$P(\text{both blue}) = \frac{9}{100}$$

13.
$$P(\text{both red}) = \sqrt{\frac{1}{4}}$$

(14)
$$P(\text{blue then green}) = \begin{bmatrix} 3\\50 \end{bmatrix}$$

15.
$$P(\text{red then blue}) = \boxed{\frac{3}{20}}$$

16.
$$P(\text{green then red}) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

17.
$$P(\text{both green}) = \sqrt{\frac{1}{25}}$$

You choose a tile at random from a bag containing 2 tiles with X, 6 tiles with Y, and 4 tiles with Z. You pick a second tile without replacing the first. Find each probability.

18.
$$P(X \text{ then } Y) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

(20)
$$P(Y \text{ then } X) = \underbrace{\frac{1}{20}}$$

21.
$$P(Z \text{ then } X) = \boxed{\frac{1}{33}}$$

$$22. P(both Z) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

23.
$$P(Y \text{ then } Z) = \frac{2}{11}$$

24. There are 12 girls and 14 boys in math class. The teacher puts the names of the students in a hat and randomly picks one name. Then the teacher picks another name without replacing the first. What is the probability that both students picked are boys?