9-6

Practice

Form K

The Quadratic Formula and the Discriminant

Use the quadratic formula to solve each equation.

1.
$$3z^2 + z - 4 = 0$$
 $-\frac{4}{3}$, 1

2.
$$2d^2 + 9d = 5$$
 -5, $\frac{1}{2}$

3.
$$2v^2 + 12v + 10 = 0$$
 -5, -1

4.
$$2t^2 - 5t - 12 = 0 -\frac{3}{2}$$
, **4**

5.
$$3c^2 - 13c + 4 = 0$$
 $\frac{1}{3}$, 4

6.
$$15b^2 + 22b + 8 = 0$$
 $-\frac{2}{3}$, $-\frac{4}{5}$

Use the quadratic formula to solve each equation. Round answers to the nearest hundredth.

7.
$$y^2 - 4y - 4 = 0$$
 -0.83, 4.83

8.
$$3r^2 + 5r = 1$$
 -1.85, 0.18

9.
$$h^2 + 12h = -16$$
 -10.47, -1.53

10.
$$5v^2 + 3v = 1$$
 -0.84, 0.24

11. A football is passed through the air and caught at ground level for a touchdown. The height h of the ball in feet is given by $h = -d^2 + 12d + 6$, where d is the distance in feet the ball travels horizontally. How far from the player passing the ball will the ball be caught? **about 12.48 ft**

Which method(s) would you choose to solve each equation? Justify your reasoning.

12.
$$a^2 + 3a - 11 = 0$$
 quadratic formula, completing the square, or graphing; the coefficient of the x^2 -term is 1, but the equation cannot be factored.

13.
$$9d^2 - 100 = 0$$

square roots; there is no x-term.

14.
$$6h^2 - 11h - 3 = 0$$
 quadratic formula, the equation cannot be factored.

15.
$$n^2 - n - 6 = 0$$

factoring; the equation is easily factorable.

Practice (continued)

Form K

The Quadratic Formula and the Discriminant

Find the number of real-number solutions of each equation.

16.
$$x^2 - 10x + 9 = 0$$
 2

17.
$$-5x^2 - 2x - 14 = 0$$

18.
$$x^2 + 10x + 25 = 0$$
 1

19.
$$x^2 - 4x = 0$$
 2

Use the quadratic formula to solve each equation. If necessary, round answers to the nearest hundredth.

20.
$$4r^2 - 100 = 0 \pm 5$$

21.
$$a^2 - 2a = 99$$
 -9, 11

22.
$$7g^2 - 2g - 10 = 0$$
 -1.06, 1.35 23. $15k^2 - 7k = 2$ **-1.2 2.** $\frac{2}{5}$

23.
$$15k^2 - 7k = 2 -\frac{1}{5}$$

Find the value of the discriminant and the number of real-number solutions of each equation.

24.
$$x^2 + 7x + 5 = 0$$
 29, 2

25.
$$x^2 + 4x + 10 = 0$$
 -24; no real solutions

26.
$$-3x^2 + 9x - 2 = 0$$
 57. 2

27.
$$5x^2 + 11x + 8 = 0$$
-39: no real solutions

- 28. The daily production of a company is modeled by the function $p = -w^2 + 75w - 1200$. The daily production, p, is dependent on the number of workers, w, present. If the break-even point is when p = 0, what are the least and greatest number of workers the company must have present each day in order to break even? 23; 51
- **29. Reasoning** The equation $3x^2 + bx + 3 = 0$ has one real solution. What must be true about b? $b = \pm 6$