Practice

Form K

Completing the Square

Find the value of c such that each expression is a perfect-square trinomial.

1.
$$z^2 + 2z + c$$
 1

2.
$$h^2 + 14h + c$$
 49

3.
$$p^2 - 11p + c$$
 $\frac{121}{4}$

4.
$$n^2 + 26n + c$$
 169

Solve each equation by completing the square. If necessary, round to the nearest hundredth.

5.
$$t^2 - 17t = -52$$
 4, 13

6.
$$m^2 + 6m = 7$$
 –7, 1

7.
$$f^2 + 3f = 88$$
 -11, 8

8.
$$z^2 + 9z = 36$$
 -12. 3

9.
$$a^2 + 13a = 12$$
 -13.87, 0.87

10.
$$g^2 + 5g + 4 = 0$$
 -4, -1

11.
$$d^2 + 7d + 9 = 0$$
 -5.3. -1.7 12. $b^2 - 5b - 10 = 0$ **-1.53. 6.53**

12
$$h^2 - 5h - 10 = 0$$
 -1 53 6 53

Solve each equation by completing the square. If necessary, round to the nearest hundredth.

13.
$$6n^2 + 9n = 12$$
 -2.35. 0.85

14.
$$2t^2 - 4t = 1$$
 -0.22, 2.22

15.
$$3v^2 + 9v + 5 = 0$$
 -2.26, -0.74 16. $4c^2 - 8c = 1$ **-0.12, 2.12**

16.
$$4c^2 - 8c = 1$$
 -0.12, 2.12

Practice (continued)

Form K

Completing the Square

17. The rectangle shown at the right has an area of 663 in^2 . What is the value of x? 13

- **18.** What are all of the values of b that will make $x^2 + bx + 64$ a perfect square? ± 16
- **19.** What are all of the values of b that will make $x^2 + bx + 144$ a perfect square? ± 24
- **20.** The product of two consecutive positive even integers is 168. What are the integers? 12 and 14
- 21. Writing Discuss how you could use graphing, factoring, and completing the square for solving the quadratic equation $x^2 + 3x - 2 = 0$.

Factoring cannot be used because $x^2 + 3x - 2$ cannot be factored. Graphing will give you an answer that is not precise. Completing the square will give you a precise answer.

22. The height of a triangle is 6x cm and the base is (3x + 10) cm. The area of the triangle is 816 cm². What are the dimensions of the base and height of the triangle?

height = 48 in.; base = 34 in.

23. Writing Does completing the square always give a solution for a quadratic equation that cannot be factored? Explain.

No, some quadratic equations do not have a solution.

24. Reasoning How do the solutions of the equation $x^2 - 6x + 9 = 16$ compare to the solutions of $x^2 - 6x + 9 = 25$? Explain how you can determine the relationship without solving both equations.

Solve each equation by factoring the left side as a perfect square trinomial and taking the square roots of both sides. The solutions are 3 ± 4 , or -1and 7. The solutions of the second equation are 3 ± 5 , or -2 and 8.