## **Practice**

Form K

Quadratic Graphs and Their Properties

Identify the vertex of each graph. Tell whether it is a maximum or a minimum.



(-2, 1); minimum

2.



(3, 2); maximum

Graph each function.

3. 
$$f(x) = 5x^2$$



**4.** 
$$f(x) = -3x^2$$



**5.** 
$$f(x) = -\frac{2}{3}x^2$$



**6.** 
$$f(x) = -\frac{3}{5}x^2$$



Order each group of quadratic functions from widest to narrowest graph.

7. 
$$y = -2x^2, y = -4x^2, y = -3x^2$$

$$y = -2x^2$$
,  $y = -3x^2$ ,  $y = -4x^2$ 

7. 
$$y = -2x^2, y = -4x^2, y = -3x^2$$
  
 $y = -2x^2, y = -3x^2, y = -4x^2$   
8.  $y = \frac{1}{3}x^2, y = 3x^2, y = \frac{1}{6}x^2$   
 $y = \frac{1}{6}x^2, y = \frac{1}{3}x^2, y = 3x^2$ 

Graph each function.

**9.** 
$$f(x) = x^2 + 3$$



**10.** 
$$f(x) = x^2 - 5$$



**11.** 
$$f(x) = -\frac{1}{3}x^2 - 1$$



## Practice (continued)

Form K

Quadratic Graphs and Their Properties

12. Jared is casting his fishing line with a lead sinker attached over the edges of a pier. The pier is 15 feet above the water. The function  $h = -16t^2 + 15$ gives the sinker's height h above the water (in feet) after t seconds. Graph the function. How many seconds does it take for the sinker to hit the water?



about 0.97 s

13. A roofer is going to drop his hammer to the ground from the roof after making sure the area is clear. The roof is 25 feet high. The function  $h=-16t^2+25$ gives the hammer's height h above the ground (in feet) after t seconds. Graph the function. How many seconds does it take for the hammer to hit the ground?



1.25 s

Identify the domain and range of each function.

**14.** 
$$y = 4x^2 - 3$$

The domain is all real numbers. The range is  $y \ge -3$ .

**16.** 
$$y = \frac{2}{3}x^2 + 1$$

The domain is all real numbers. The range is  $y \ge 1$ .

**15.** 
$$y = -\frac{1}{4}x^2 - 2$$

The domain is all real numbers. The range is  $y \le -2$ .

**17.** 
$$f(x) = -2x^2 + 6$$

The domain is all real numbers. The range is  $y \le 6$ .

- **18. Writing** Discuss how the graph of  $y = x^2 7$  differs from the graph of  $y = x^2$ . The graph of  $v = x^2 - 7$  is shifted 7 units down.
- 19. Writing Explain how you can determine if the parabola has been shifted up or down by examining the equation.

If the equation is in the form  $y = ax^2 + c$ , the sign of c determines whether the parabola is shifted up or down. If c is positive, the parabola is shifted up c units. If c is negative, the parabola is shifted down c units.

**20. Open-Ended** Write the equation of a quadratic function for which the graph opens in the same direction as the graph of  $y = x^2$ , is wider than the graph of  $y = x^2$ , and is shifted up compared to the graph of  $y = x^2$ .

Sample answer:  $y = 0.25x^2 + 3$