Practice

Form K

Operations with Radical Expressions

Simplify each sum or difference.

1.
$$11\sqrt{7} - 4\sqrt{7}$$
 7 $\sqrt{7}$

2.
$$5\sqrt{5} + \sqrt{5}$$
 6 $\sqrt{5}$

3.
$$9\sqrt{10} - 8\sqrt{10} \sqrt{10}$$

4.
$$8\sqrt{2} - \sqrt{98} \sqrt{2}$$

5.
$$\sqrt{245} + 2\sqrt{320}$$
 23 $\sqrt{5}$

6.
$$2\sqrt{54} - 3\sqrt{96}$$
 -6 $\sqrt{6}$

Simplify each product.

7.
$$\sqrt{3}(\sqrt{5} + \sqrt{3}) \sqrt{15} + 3$$

8.
$$-\sqrt{8}(2-3\sqrt{6})$$
 $-4\sqrt{2} + 12\sqrt{3}$

9.
$$2\sqrt{10}(\sqrt{5} - 4\sqrt{10})$$
 10 $\sqrt{2}$ - 80 10. $(3\sqrt{3} - 2\sqrt{2})^2$ 35 - 12 $\sqrt{6}$

10.
$$(3\sqrt{3} - 2\sqrt{2})^2$$
 35 - $12\sqrt{6}$

11.
$$(\sqrt{3} + \sqrt{6})(\sqrt{3} - \sqrt{6})$$
 -3

11.
$$(\sqrt{3} + \sqrt{6})(\sqrt{3} - \sqrt{6})$$
 -3 12. $(2\sqrt{2} + \sqrt{5})(2\sqrt{2} - \sqrt{5})$ 3

- 13. An area rug is shaped like a golden rectangle. Its length is 8 ft. What is the rug's width? Write your answer in simplified radical form and rounded to the nearest tenth of a foot. $4\sqrt{5}$ – 4 ft: 4.9 ft
- **14.** A car fits onto a golden rectangle with a length of 12 ft. What is the car's width? Write your answer in simplified radical form and rounded to the nearest tenth of a foot. $6\sqrt{5} - 6$ ft; 7.4 ft

Form K

Practice (continued)
Operations with Radical Expressions

Simplify each quotient.

15.
$$\frac{3}{\sqrt{5}-1}$$
 $\frac{3\sqrt{5}+3}{4}$

16.
$$\frac{7}{\sqrt{2}-\sqrt{3}}$$
 -7 $\sqrt{2}$ - 7 $\sqrt{3}$

17.
$$\frac{-1}{9-\sqrt{3}}$$
 $\frac{-9-\sqrt{3}}{78}$

18.
$$\frac{-3}{\sqrt{2} + \sqrt{5}} \sqrt{2} - \sqrt{5}$$

Find the exact solution for each equation. Find the approximate solution to the nearest tenth.

19.
$$\frac{3\sqrt{3}}{\sqrt{1+1}} = \frac{x}{\sqrt{3}} \frac{9\sqrt{2}}{2}$$
; 6.4

20.
$$\frac{5}{1-\sqrt{2}} = \frac{1+\sqrt{2}}{x}$$
 $-\frac{1}{5}$; -0.2

21.
$$\frac{4-\sqrt{5}}{4+\sqrt{5}} = \frac{x}{2}$$
 $\frac{42-16\sqrt{5}}{11}$; 0.6

22.
$$\frac{x}{3-\sqrt{2}} = \frac{2+\sqrt{2}}{5} \frac{4+\sqrt{2}}{5}$$
; **1.1**

Simplify each expression.

23.
$$\sqrt{108} + \sqrt{147}$$
 13 $\sqrt{3}$

24.
$$2\sqrt{3}(6 + 2\sqrt{6})$$
 12 $\sqrt{3}$ + **12** $\sqrt{2}$

25.
$$(\sqrt{2} + \sqrt{3})^2$$
 5 + 2 $\sqrt{6}$

26.
$$5\sqrt{96} - 8\sqrt{150}$$
 -20 $\sqrt{6}$

27. Writing Are $\sqrt{2}$ and $\sqrt{32}$ like radicals? Can their sum be simplified?

No; $\sqrt{32}$ can be simplified to $4\sqrt{2}$ which is a like radical with $\sqrt{2}$. To find their sum add the numbers in front of the radicals without changing the value of the radicand. The result is $5\sqrt{2}$.