Practice

Form K

Simplifying Radicals

Simplify each radical expression.

1.
$$\sqrt{196}$$
 14

2.
$$\sqrt{28}$$
 2 $\sqrt{7}$

3.
$$-\sqrt{275}$$
 -5 $\sqrt{11}$

4.
$$3\sqrt{12}$$
 6 $\sqrt{3}$

5.
$$-5\sqrt{128}$$
 -40 $\sqrt{2}$ **6.** $9a\sqrt{243}$ **81** $a\sqrt{3}$

6.
$$9a\sqrt{243}$$
 81 $a\sqrt{3}$

7.
$$\sqrt{324x^2}$$
 18x

8.
$$3\sqrt{27m^4n}$$
 9m² $\sqrt{3r}$

8.
$$3\sqrt{27m^4n}$$
 9m² $\sqrt{3n}$ 9. $-2\sqrt{147a^2b^4}$ -14ab² $\sqrt{3}$

Simplify each product.

10.
$$\sqrt{12} \cdot \sqrt{20}$$
 4 $\sqrt{15}$

11.
$$2\sqrt{18} \cdot \sqrt{75}$$
 30 $\sqrt{6}$

10.
$$\sqrt{12} \cdot \sqrt{20}$$
 4 $\sqrt{15}$ **11.** $2\sqrt{18} \cdot \sqrt{75}$ **30** $\sqrt{6}$ **12.** $\frac{1}{2}\sqrt{72} \cdot 3\sqrt{48}$ **36** $\sqrt{6}$

13.
$$10\sqrt{20} \cdot (-9\sqrt{27})$$

-540 $\sqrt{15}$

14.
$$\sqrt{24a} \cdot \sqrt{32b}$$

15.
$$\sqrt{15x} \cdot \sqrt{20xy}$$

$$\frac{10x\sqrt{3y}}{}$$

16.
$$3\sqrt{50}f^2g^3 \cdot \sqrt{63}fg$$
 17. $\sqrt{xy^7z^2} \cdot \sqrt{x^2yz^3}$ 45 $fg^2\sqrt{14}f$ $xy^4z^2\sqrt{xz}$

17.
$$\sqrt{xy^7z^2} \cdot \sqrt{x^2yz^2}$$

18.
$$4\sqrt{15hk^2} \cdot (-8\sqrt{5hk})$$

-160hk $\sqrt{3k}$

- 19. A carpenter is building rectangular walls for a room addition. The width of a section of wall is two times the height h. Each section has a brace that connects two opposite corners of the section. What is a simplified expression for the length of a brace? $h\sqrt{5}$
- **20.** A walking path is shaped like a rectangle with a width 7 times its length l. What is a simplified expression for the distance between opposite corners of the walking path? $5/\sqrt{2}$

Practice (continued)

Form K

Simplifying Radicals

Simplify each radical expression.

21.
$$\sqrt{\frac{36}{25}}$$
 $\frac{6}{5}$

22.
$$\frac{1}{\sqrt{7}}$$
 $\frac{\sqrt{7}}{7}$

23.
$$-5\sqrt{\frac{121}{361}}$$
 $-\frac{55}{19}$

24.
$$\frac{\sqrt{6}}{\sqrt{3y}} \frac{\sqrt{2y}}{y}$$

Explain why each radical expression is or is not in simplified form.

25.
$$\frac{\sqrt{12n}}{n}$$

No, $\frac{\sqrt{12n}}{n}$ can be simplified to $\frac{2\sqrt{3n}}{n}$.

26. $\frac{5}{\sqrt{5}}$ No, there is a radical in the denominator. $\frac{5}{\sqrt{5}}$ simplifies to $\sqrt{5}$.

27.
$$5\sqrt{2}$$

Yes, there is not a radical in the denominator and the radicand is in lowest terms.

28. $12\sqrt{24}$

No, $12\sqrt{24}$ can be simplified to $24\sqrt{6}$

Simplify each radical expression.

29.
$$\frac{\sqrt{s^3}}{\sqrt{t^3}}$$
 $\frac{s\sqrt{st}}{t^2}$

30.
$$\frac{\sqrt{120}}{\sqrt{6}}$$
 2 $\sqrt{5}$

31.
$$\frac{-5\sqrt{3}}{\sqrt{12}}$$
 _-5/2

32.
$$\sqrt{\frac{5x}{49x^2}}$$
 $\frac{\sqrt{5x}}{7x}$

33. Writing Describe when it is necessary to rationalize the denominator. Explain how you do this. Provide an example to demonstrate.

You rationalize the denominator if there is a radical that cannot be simplified to a rational number in the denominator. You do this by multiplying both the numerator and the denominator by the same radical that is in the denominator. For example, $\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$.