Types of Numbers

There are important sets of numbers you should know:

Types of Numbers

Natural numbers: the numbers that occur 'naturally' in the world. {1, 2, 3, ...}
Whole numbers: the natural numbers, and 0. {0, 1, 2, 3,...}
Integers: positive and negative natural numbers, and 0. {...-3, -2, -1, 0, 1, 2, 3,...}
Rational numbers: any number that can be written as a ratio ^a/_b where *a* and *b* are integers, *b* ≠ 0.
Examples: ²/₃; 7 because it equals ⁷/₁; 0 because it equals ⁰/₁; 0.333 because it equals ¹/₃; and 5.667 because it equals ⁵⁶⁶⁷/₁₀₀₀.
Irrational numbers: any number that can <u>not</u> be written as a ratio ^a/_b where *a* and *b* are integers. Examples: any non-repeating, non-terminating decimals; √2, π and the special number *e*.

All of these are examples of what we call **real numbers**. The diagram below shows the relationship between all these types of numbers.

Notice that $\frac{1}{0}$ does not fit any of these definitions. It is said to be an *undefined* expression.

Use the information from the previous page to answer the questions below.

Name <u>all</u> of the sets of numbers to which each number belongs:

11 2. 1/3 3. 7 4	ł.	0
------------------	----	---

Which is the most reasonable for each situation, *whole numbers*, *integers*, or *rational numbers*?

- 5. Your shoe size. 6. The number of siblings you have
- 7. The number of quarts of paint you need to <u>buy</u> to paint a room.
- 8. The number of quarts of paint you <u>use</u> when you paint a room.

Is each statement *true* or *false*? If false, give a counterexample.

- 9. All integers are rational numbers.
- 10. All negative numbers are integers.
- 11. Every multiple of 3 is odd.